Ta thấy: \(\left(x-y+3\right)^2\ge0\forall x;y\)
\(\left|y-3\right|\ge0\forall y\)
\(\Rightarrow\left(x-y+3\right)^2+\left|y-3\right|\ge0\forall x;y\)
Mặt khác: \(\left(x-y+3\right)^2+\left|y-3\right|\le0\)
\(\Rightarrow\left(x-y+3\right)^2+\left|y-3\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+3\right)^2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+3=0\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3+3=0\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
Khi đó, biểu thức \(\left(x-2y+6\right)^{10}+27\) trở thành:
\(\left(0-2\cdot3+6\right)^{10}+27\)
\(=\left(-6+6\right)^{10}+27\)
\(=27\)
#Urushi