\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow2+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=-1\)
Xét \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(-1\right)=4\Leftrightarrow a^4+b^4+c^4=6\)