\(\dfrac{4}{1.2}+\dfrac{4}{2.3}+...+\dfrac{4}{2021.2022}\\ =4\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2021.2022}\right)\\ =4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\right)\\ =4\left(1-\dfrac{1}{2022}\right)\\ =4.\dfrac{2021}{2022}\\ =\dfrac{4042}{1011}\)
4/1.2 4/2.3 4/3.4 ... 4/2021.4/2022
= 1/4. (1/1- 1/2+ 1/2- 1/3+ 1/3- 1/4+...+1/2021- 1/2022)
=1/4. (1/1- 1/2022)= 1/4. (2022/2022- 1/2022)
= 1/4. 2021/2022
= 2021/8088