Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}\)hãy tính giá trị biểu thức
\(A=f\left(\frac{1}{2012}\right)+f\left(\frac{2}{2012}\right)+...+f\left(\frac{2010}{2012}\right)+f\left(\frac{2011}{2012}\right)\)
So sánh \(\left(\frac{2012^{2012}}{2013^{2012}}+1\right)^{2013}\) và \(\left(\frac{2012^{2013}}{2013^{2013}}+1\right)^{2012}\)
Cho f(x)=\(\frac{^{x^3}}{1-3x+3x^2}\) .Tính giá trị biểu thức sau
A= f\(\left(\frac{1}{2012}\right)\)+f\(\left(\frac{2}{2012}\right)\)+...+f\(\left(\frac{2011}{2012}\right)\)
Không dùng bảng số và máy tính, chứng minh rằng:
A = \(\frac{1}{\left(\sqrt{2006}+\sqrt{2009}\right)^3}\)\(+\frac{1}{\left(\sqrt{2009}+\sqrt{2012}\right)^3}\)\(+\frac{1}{\left(\sqrt{2012}+\sqrt{2015}\right)^3}\)\(< \frac{1}{528}\)
Không dùng máy tính bỏ túi hãy tính: \(A=\frac{\left(2010^2-2012\right)\left(2010^2+6026\right).2012}{2008.2009.2011.2014}\)
giải pt ( đặt ẩn phụ)
1. \(x^2+\sqrt{x+2012}=2012\)
2.\(4\cdot\sqrt{\frac{3x+1}{x-1}}+\sqrt{\frac{x-1}{3x+1}}=4\)
3. \(\left(x-3\right)\cdot\left(x+1\right)+4\cdot\left(x-3\right)\cdot\sqrt{\frac{x+1}{x-3}}+3=0\)
Tính P=\(\frac{\left(2012^2.2022+31.2013-1\right)\left(2012.2017+4\right)}{2013.2014.2015.2016.2017}\)
Tính tổng sau:
\(A=\frac{1}{\left[\sqrt[3]{2}\right]}+\frac{1}{\left[\sqrt[3]{3}\right]}+\frac{1}{\left[\sqrt[3]{4}\right]}+\frac{1}{\left[\sqrt[3]{5}\right]}+\frac{1}{\left[\sqrt[3]{6}\right]}+\frac{1}{\left[\sqrt[3]{7}\right]}+\frac{1}{\left[\sqrt[3]{9}\right]}+...+\frac{1}{\left[\sqrt[3]{2012^3-1}\right]}\)
(trong tổng trên không có các số dạng \(\frac{1}{\left[\sqrt[3]{n}\right]}\) với n là lập phương 1 số nguyên,ví dụ:1 và 8)
Chứng minh: \(\frac{1}{2\cdot\sqrt{1}}+\frac{1}{3\cdot\sqrt{2}}+\frac{1}{4\cdot\sqrt{3}}+...+\frac{1}{2012\cdot\sqrt{2011}}+\frac{1}{2013\cdot\sqrt{2012}}\)\(< 2\)
Chứng minh: A=\(\frac{1}{3\cdot\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\cdot\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\cdot\left(\sqrt{48}+\sqrt{49}\right)}\)\(< \frac{1}{2}\)