Cho đồ thị hàm số y=1 + cosx (C) và y=1 + cos(x-α) (C') trên đoạn [ 0 ; π ] với 0 < α < π 2 . Tính α biết rằng diện tích hình phẳng giới hạn bởi (C) và (C') và đường x = 0 thì bằng diện tích hình phẳng giới hạn với(C') và đường y = 1, x = π . Ta được kết quả nào sau đây
A. α = π 6
B. α = π 4
C. α = π 3
D. α = π 12
Tìm diện tích hình phẳng giới hạn bởi các đường y = x + s i n 2 x , y = x và x = 0 , x = π .
A. π 4
B. π 6
C. π 2
D. π
Diện tích hình phẳng giới hạn bởi các đường cong y = sin x; y= cos x và các đường thẳng x = 0 , x = π bằng
A. 3 2
B. 2
C. 2 2
D. - 2 2
Diện tích hình phẳng giới hạn bởi các đường y = c o s x , trục tung, trục hoành và đường thẳng x=π là
A. 2.
B. 1 2 .
C. 2 π .
D. 1.
Diện tích hình phẳng giới hạn bởi các đường y = x + sin 2 x , y = x , x = 0 , x = π là
A. π 2
B. π 2 − 1
C. π − 1
D. π
Diện tích hình phẳng giới hạn bởi các đường y = x + sin 2 x , y = x , x = 0 , x = π là:
A. π 2
B. π 2 - 1
C. π - 1
D. π
Gọi D là diện tích hình phẳng giới hạn bởi các đường y = sin 2 x , trục tung, trục hoành và đường thẳng x = π . Quay hình phẳng D quay trục Ox ta được khối tròn xoay có thể tích là
A. π 2 .
B. π 2 .
C. π 2 4 .
D. π 2 2 .
Tính diện tích hình phẳng giới hạn bởi đường cong y = x 2 - x + 3 và đường thẳng y=2x+1
A. 1/3
B. 1/6
C. 1/4
D. 1/2
Cho hình phẳng (D) được giới hạn bởi các đường x = 0 , x = π , y = 0 và y = − sin x . Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
A. V = π ∫ 0 π sin x d x .
B. V = π ∫ 0 π sin 2 x d x .
C. V = π ∫ 0 π − sin x d x .
D. V = ∫ 0 π sin 2 x d x .