Ta có : \(y'=\frac{\left(2x^3+1\right)'}{5\sqrt[5]{\left(2x^3+1\right)^4}}=\frac{6x^2}{5\sqrt[5]{\left(2x^3+1\right)^4}}\)
Ta có :
\(y'=\frac{\left(2x^3+1\right)'}{5\sqrt[5]{\left(2x^3+1\right)^4}}=\frac{6x^2}{5\sqrt[5]{\left(2x^3+1\right)^4}}\)
\(y'=\frac{\left(2x^3+1\right)}{5\sqrt[5]{\left(2x^3+1\right)^4}}=\frac{6x^2}{5\sqrt[5]{\left(2x^3+1\right)^4}}\)
\(y'=\frac{\left(2x^3+1\right)}{5\sqrt[5]{\left(2x^3+1\right)^4}}=\frac{6x^2}{5\sqrt[5]{\left(2x^3+1\right)^4}}\)
\(y'=\frac{\left(2x^3+1\right)}{5\sqrt[5]{\left(2x^3+1\right)^4}}\) =\(\frac{6x^2}{5\sqrt[5]{\left(2x^3+1\right)^4}}\)