\(D=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2014}}\)
\(D=\frac{2.2014}{\frac{2}{2}+\frac{1}{\frac{2.3}{2}}+...+\frac{1}{\frac{2015.2014}{2}}}\)
\(D=\frac{2.2014}{\frac{2}{2}+\frac{2}{2.3}+...+\frac{2}{2014.2015}}\)
\(D=\frac{2015}{\frac{1}{2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}}\)
\(D=\frac{2014}{\frac{1}{2}+\frac{1}{2}-\frac{1}{2015}}\)
\(D=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}}\)
\(D=\frac{2.2014}{\frac{1}{\frac{\left(1+1\right).1}{2}}+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2014+1\right).2014}{2}}}\)
\(D=\frac{2.2014}{\frac{2}{1.2}+\frac{2}{3.2}+\frac{2}{4.3}+\frac{2}{2015.2014}}\)
\(D=\frac{2.2014}{2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)}\)
\(D=\frac{2014}{\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)}\)
\(D=\frac{2014}{\left(1-\frac{1}{2015}\right)}\)
\(D=\frac{2014}{\frac{2014}{2015}}\)
\(D=\frac{2014.2015}{2014}\)
\(D=2015\)
Tham khảo nhé~