Chứng minh bất đẳng thức sau: \(\sin\frac{\pi}{15}\sin\frac{\pi}{12}-\cos\frac{\pi}{15}\cos\frac{\pi}{12}:2\sin\frac{7\pi}{12}=\frac{-1}{2}\)
Cho \(\sin\alpha+\cos\alpha=\frac{\sqrt{6}}{2},a\in\left(0;\frac{\pi}{4}\right)\)
Tính giá trị biểu thức: \(P=\cos\left(\alpha+\frac{\pi}{4}\right)+\sqrt{2\left(1-\sin\alpha\cos\alpha+\sin\alpha-\cos\alpha\right)}\)
Biết \(\sin\alpha\)= \(-\frac{2}{3}\)và \(-\pi< \alpha< \frac{-\pi}{2}\).Tính:
1.\(\tan\alpha\)và \(\cos3\alpha\)
2.Q= \(2\cos(2\alpha+\frac{\pi}{3})\)
3.P= \(\sin(\alpha+\frac{5\pi}{2})-3\cos(\alpha-\frac{11\pi}{2})+2\sin(3\pi+\alpha)\)
giải pt \(cos^2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{5}-x\right)=\frac{5}{2}\)
giải pt
a) \(\sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
b) \(3tan^3x-tanx+\frac{3\left(1+sinx\right)}{cos^2x}-8cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)=0\)
Chứng minh:
cos4 x-cos4(\(\frac{\pi}{2}\)-x)=2cos2(\(\pi\)+x)-1
RÚT GỌN:
1. \(4\sin xsin\left(x+\frac{\pi}{2}\right)sin\left(2x+\frac{\pi}{2}\right)\)
2 \(1-8\sin^2x\cos^2x\)
3 \(\frac{2}{\left(1-\tan a\right)\left(1+\cot a\right)}\)
4 \(\left(1-\tan^2a\right)\cot a\)
5 \(\cos^2\frac{\pi}{24}-\cos^4\frac{\pi}{24}\)
1, A = cos2 (73) + cos2 (47) + cos (73).cos (47)
2, B = sin6 (pi/24) + cos6 (pi/24)
3, C = tan2 (pi/12) + tan2 (5pi/12)
4, D = tan6 (20) - 33tan4 (20) +27tan2 (20) - 3
1.Biết \(\cos\alpha\)= \(\frac{2}{\sqrt{5}}\)(\(\frac{-\pi}{2}< \alpha< 0\)) .Tính :
a) \(\sin\alpha\)và \(\sin2\alpha\)
b) \(\cos4\alpha\)
c) \(\cos(2\alpha+\frac{9\pi}{2})\)
d) P= (3-\(2sin2\alpha\))(3+\(2\cos2\alpha\))