misa
Đặt tên biểu thức là A ta có :
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\)
\(=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+.....+\left(\frac{1}{10}-\frac{1}{10}\right)\)
\(=\left(\frac{1}{2}-\frac{1}{11}\right)+0+......+0\)
\(=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{10.11}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
=\(\frac{1}{2}-\frac{1}{11}\)
=\(\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
=1/2 x3 + 1/ 3 x 4 + 1 / 4 x 5 + 1 / 5 x 6 +...+ 1/ 9x10 + 1/10x11
=1/2 - 1/3 + 1/3 -1/4 + 1/4 - 1/5 +...1/9 - 1/10 + 1/10 - 1/11
=1/2 - 1/11
= 9/22
Đặt \(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{2}-\frac{1}{11}\)
\(A=\frac{9}{22}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)