\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+\frac{1}{162}+\frac{1}{486}\)
\(3\times A=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+\frac{1}{162}\)
\(3\times A-A=\left(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+\frac{1}{162}\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+\frac{1}{162}+\frac{1}{486}\right)\)
\(2\times A=\frac{3}{2}-\frac{1}{486}\)
\(A=\frac{182}{243}\)