\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}=\frac{1}{1}+\left(-\frac{1}{2}+\frac{1}{2}\right)+...+\left(-\frac{1}{2008}+\frac{1}{2008}\right)-\frac{1}{2009}\)
\(A=1-\frac{1}{2009}=\frac{2008}{2009}\)
\(2.B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2008.2009.2010}\)
\(2.B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{2008.2009}-\frac{1}{2009.2010}\right)\)
\(2.B=\frac{1}{1.2}+\left(-\frac{1}{2.3}+\frac{1}{2.3}\right)+...+\left(-\frac{1}{2008.2009}+\frac{1}{2008.2009}\right)-\frac{1}{2009.2010}\)
\(2.B=\frac{1}{1.2}-\frac{1}{2009.2010}=\frac{2009.2010-1.2}{2009.2010}\)
=> \(B=\frac{2009.1005-1}{2009.2010}\)
Vậy \(\frac{B}{A}=\frac{2009.1005-1}{2009.2010}:\frac{2008}{2009}=\frac{2009.1005-1}{2008.2010}=...\)