Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
duong minh duc

Tính B=\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+...+\frac{3}{1+2+3+...+100}\)

Legona Ace
13 tháng 1 2018 lúc 13:21

\(B=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+....+\frac{3}{1+2+3+...+100}\)

\(B=3+3\left(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+..+100}\right)\)

Xét thừa số tổng quát: \(\frac{1}{1+2+3+...+n}=\frac{1}{\left[\left(n-1\right):1+1\right]:2.\left(n+1\right)}=\frac{1}{\frac{n\left(n+1\right)}{2}}\)

Ta có: \(B=3+3\left(\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{100\left(100+1\right)}{2}}\right)\)

\(B=3+3\left[2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\right]\)

\(B=3+6\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(B=3+6\left(\frac{1}{2}-\frac{1}{101}\right)\)


Các câu hỏi tương tự
Khánh Huyền Dương Nữ
Xem chi tiết
‍
Xem chi tiết
Anh Thư Nguyễn
Xem chi tiết
Fenny
Xem chi tiết
Do minh linh trang
Xem chi tiết
Vu Phuong Thao
Xem chi tiết
Doraemon
Xem chi tiết
Khoa Võ Đăng
Xem chi tiết
sakura
Xem chi tiết