Tính giá trị biểu thức : \(A=\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Tính\(\frac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3\sqrt{5}-3\sqrt{2}}}\)
tính:
a)\(\frac{1}{1+\sqrt{5}}+\frac{1}{1-\sqrt{5}}\)
b)\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
c)\(\frac{2}{\sqrt{5}+1}+\sqrt{\frac{2}{3-\sqrt{5}}}-5\sqrt{\frac{1}{5}}\)
d)\(\left(\frac{5}{\sqrt{15}-\sqrt{10}}-\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{3}-\sqrt{5}}\right)^2\)
e)\(\frac{2}{\sqrt{3}-\sqrt{5}}+\frac{3-2\sqrt{3}}{\sqrt{3}-2}\)
thực hiện phép tính: a)\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}+\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
b)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
c)\(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)
d)\(\left(2\sqrt{5}+\sqrt{12}\right)\left(\sqrt{3}-\sqrt{5}\right)\)
e)\(\sqrt{2}+\sqrt{\frac{1}{2}}+\sqrt{72}-\sqrt{\frac{3}{2}}\)
f)\(\sqrt{2}\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)\)
g)\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\left(2\sqrt{3}-2007\right)\)
Tính:
a/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
b/ \(\frac{\sqrt{20+8\sqrt{3}}+\sqrt{20-8\sqrt{3}}}{\sqrt{5+2\sqrt{3}}-\sqrt{5-2\sqrt{3}}}-\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\$\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}}\)
Bài 1: Thực hiện phép tính
1) A= \(\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}\)
2) A= \(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
3) \(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}}\)
4) B= 5(\(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\))2 + ( \(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\))2
5) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(A=\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(B=\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(C=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(D=\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(E=\frac{\left(\sqrt{5+2}\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
rút gọn các căn thức sau
B=\(\frac{\sqrt{5-\sqrt{3}}-\sqrt{5+\sqrt{3}}}{\sqrt{5-\sqrt{22}}}+\sqrt{27+10\sqrt{2}}\)C= \(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)D=\(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)A= \(\frac{1}{\sqrt{3+2\sqrt{2}}}+\frac{1}{\sqrt{5+2\sqrt{6}}}+\frac{1}{\sqrt{7+2\sqrt{12}}}+....+\frac{1}{\sqrt{199+2\sqrt{9900}}}\)