lụi đê ( lụi nhg đúng :D )
\(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}}=A\)
\(20+\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}=A^2\)
20 + A = A2
GIẢI RA TÌM A
lụi đê ( lụi nhg đúng :D )
\(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}}=A\)
\(20+\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}=A^2\)
20 + A = A2
GIẢI RA TÌM A
Tính:\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}} }\).(có 2014 dấu căn)
cho biểu thức A= \(\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}\)(2014 dấu căn) .A=?
Tính giá trị của biểu thức y
\(y=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\)
(có 2014 dấu căn)
Cho \(T=\sqrt{20+\sqrt{20+...+\sqrt{20}}}+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}\)
(2006 dấu căn) (2006 dấu căn)
CM: 7<T<8
\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Tính
Cho \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\)
Chứng minh rằng A < 5
Tính A = \(\sqrt[3]{49+20\sqrt{6}}+\sqrt[3]{49-20\sqrt{6}}\)
a,Cho biểu thức A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
CMR: A là số chính phương
b,Giair phương trình \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
Cho \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\)
\(B=\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}}\)
Chứng minh rằng 7<A+B<8. tìm [A+B]