Ta có :A = \(\frac{5}{3.4}+\frac{5}{4.6}+\frac{5}{5.8}+...+\frac{5}{40.78}=\frac{5}{2.2.3}+\frac{5}{2.3.4}+\frac{5}{2.4.5}+...+\frac{5}{2.39.40}\)
\(=\frac{5}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\right)=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{39}-\frac{1}{40}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{40}\right)=\frac{5}{2}.\frac{19}{40}=\frac{19}{16}\)