S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2) / 3
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.3+...+n.\left(n+1\right).3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:
gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2
a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3
a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4
.......
an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n
an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)
cộng các vế đẳng thức trên ta có:
3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1)
=>3(a1+a2+...+an-1+an)=n(n+1)(n+2)
mà A=a1+a2+...+an-1+an nên
a=n(n+1)(n+2)/3
P/s tham khảo nha