Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn huy bảo

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

Minh Triều
23 tháng 6 2015 lúc 14:31

ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:

gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2

a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3

a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4

 .......

an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n

an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)

cộng các vế đẳng thức trên ta có:

3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1)

=>3(a1+a2+...+an-1+an)=n(n+1)(n+2)

mà A=a1+a2+...+an-1+an nên 

A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
23 tháng 6 2015 lúc 14:26

\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.4+3.4.3+...+3n\left(n+1\right)\)

\(=1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

vậy \(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Nguyễn Việt Hoàng
2 tháng 8 2017 lúc 10:41

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Lê Đức Hưng
12 tháng 4 2020 lúc 16:33

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
   a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
   a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
   …………………..
   an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
   an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Khách vãng lai đã xóa

Các câu hỏi tương tự
BÍCH THẢO
Xem chi tiết
đạt đẹp trai
Xem chi tiết
Nguyễn Lê Bảo Ngọc
Xem chi tiết
Xem chi tiết
TRAI HỌ CHU (PÉ LEO 2K5)...
Xem chi tiết
Long Vũ
Xem chi tiết
van duongthe
Xem chi tiết
Pé Yến Siêu Quậy
Xem chi tiết
NGUYỄN SANH KIÊN
Xem chi tiết
Nguyễn Việt Hoàng
Xem chi tiết