Tính \(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
Tính:
\(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
Tính:
A= \(\frac{1}{2\sqrt{1}+1\sqrt{2}}\)+ \(\frac{1}{3\sqrt{2}+2\sqrt{3}}\)+....+ \(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)
tính \(\sqrt{1+2018^2+\frac{2018}{2019}^2}+\frac{2018}{2019}\)
Rút gọn \(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{4}+\sqrt{5}}{1+\sqrt{4}+\sqrt{5}}+...+\frac{1-\sqrt{2018}+\sqrt{2019}}{1+\sqrt{2018}+\sqrt{2019}}\)
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}\)
Tính \(f\left(\frac{1}{2019}\right)+f\left(\frac{2}{2019}\right)+...+f\left(\frac{2018}{2019}\right)\)
So sánh \(\sqrt{2019^2-1}-\sqrt{2018^2-1}\) và \(\frac{2.2018}{\sqrt{2019^2-1}+\sqrt{2018^2-1}}\)
rút gon biểu thức:
1, (√1+a√1+a−√1−a+1−a√1−a2−1+a)(√1a2−1−1a)
2, 1+2019√2018−2018√2019√2018+√2019+√2018.2019
Cho \(x=1-\sqrt[3]{2}+\sqrt[3]{4}\)Tính \(B=x^{2019}-3x^{2018}+9x^{2017}-9x^{2016}+2019\)