Từ đầu bài suy ra:
\(\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=\frac{7}{6}+\frac{1}{14}+\frac{1}{12}\)
\(\Rightarrow x+y+y+z+x+z=\frac{98}{84}+\frac{6}{84}+\frac{7}{84}\)
\(\Rightarrow2x+2y+2z=\frac{111}{84}\)
\(\Rightarrow2\left(x+y+z\right)=\frac{37}{28}\)
\(\Rightarrow x+y+z=\frac{37}{28}:2=\frac{37}{28}.\frac{1}{2}=\frac{37}{56}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{37}{56}-\frac{1}{14}=\frac{33}{56}\\y=\frac{37}{56}-\frac{1}{12}=\frac{97}{168}\\z=\frac{37}{56}-\frac{7}{6}=-\frac{185}{168}\end{cases}}\)
Vậy \(x=\frac{33}{56};y=\frac{97}{168};z=-\frac{185}{168}\)
bạn nhớ thử lại xem, đúng chưa nhé :)