Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hà Đức
tìm x,y,z thuộc Z biết x+2y/3=y+2z/4=z+2x/5 và xy+yz+2xz=280

 

subjects
8 tháng 2 lúc 18:19

đặt \(\dfrac{x+2y}{3}=\dfrac{y+2z}{4}=\dfrac{z+2x}{5}=t\)

vậy ta đc \(\left\{{}\begin{matrix}x+2y=3t\left(1\right)\\y+2z=4t\left(2\right)\\z+2x=5t\left(3\right)\end{matrix}\right.\)

từ (1) ta có: x = 3t - 2y

thay vào (3) ta được: z + 2 × (3t - 2y) = 5t

=> z + 6t - 4y = 5t     => z = -t + 4y (3')

từ (2) ta có: \(z=\dfrac{4t-y}{2}\left(2'\right)\)

từ (2') và (3')  ta có:

\(-t+4y=\dfrac{4t-y}{2}\\ -2t+8y=4t-y\\ 9y=6t=>y=\dfrac{2}{3}t\)

thay vào (1): \(x=3t-2\cdot\dfrac{2}{3}t=3t-\dfrac{4}{3}t=\dfrac{5}{3}t\)

thay vào (2'): \(z=\dfrac{4t-\dfrac{2}{3}t}{2}=\dfrac{\dfrac{10}{3}t}{2}=\dfrac{5}{3}t\)

vậy: \(x=\dfrac{5}{3}t;y=\dfrac{2}{3}t;z=\dfrac{5}{3}t\)

thay các giá trị này vào biểu thức trên ta được:

\(xy+yz+2zx=\dfrac{5}{3}t\cdot\dfrac{2}{3}t+\dfrac{2}{3}t\cdot\dfrac{5}{3}t+\dfrac{5}{3}t\cdot\dfrac{5}{3}t\\ xy+yz+2zx=\dfrac{10}{9}t^2+\dfrac{10}{9}t^2+\dfrac{50}{9}t^2\\ =>\dfrac{70}{9}t^2=280=>t=6\\ \left\{{}\begin{matrix}x=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\\y=\dfrac{2}{3}t=\dfrac{2}{3}\cdot6=4\\y=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\end{matrix}\right.\)

vậy các số x; y; z cần tìm lần lượt là 10; 4; 10


Các câu hỏi tương tự
Lê Tiến Lộc Redhood
Xem chi tiết
Hà Minh Trang
Xem chi tiết
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
Hoàng Sơn
Xem chi tiết
letridung
Xem chi tiết
Bửu Vũ Trần Gia
Xem chi tiết
Phạm Thùy Linh ( team ❤️...
Xem chi tiết