\(hpt\Leftrightarrow\hept{\begin{cases}xy=y^2\\x^2+y^2=-50\end{cases}}\)
Dễ thấy: \(VT=x^2+y^2\ge0>-50=VP\)
sai đề
7y^2 giúp cái tui cx mắc ở bài này
\(hpt\Leftrightarrow\hept{\begin{cases}xy=y^2\\x^2+y^2=-50\end{cases}}\)
Dễ thấy: \(VT=x^2+y^2\ge0>-50=VP\)
sai đề
7y^2 giúp cái tui cx mắc ở bài này
Bài 1 : Cho x,y,z đôi một khác nhau và x+y+z=0.
Tính giá trị của biểu thức \(A=\frac{x^2y+2xz^2-xy^2-2yz^2}{2xy^2+2yz^2+2zx^2+3xyz}\)
bài 2 : Tìm các số nguyên dương x,y,z thỏa mãn \(xz=y^2\)và \(x^2+z^2+99=7y^2\)
BÀi 3 : Tìm các số tự nhiên x,y thõa mãn \(x^2-5x+7=3^y\)
_Tìm x , y , z nguyên dương thỏa mãn xy + xz + yz = 3xyz
_Cho x , y là các số dương và x + y = z . Tìm GTNN của N=(1-4:x^2)(1-4:y)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
Tìm các cặp số nguyên dương (x,y) thỏa mãn (xy+2)^2=x^2+y^2
1)cho 2 số x,y thỏa mãn xy+x+y=7 và x^2y +xy^2= 10
tính giá trị biểu thức A= x^3 +y^3
2)tìm bộ 3 x,y,z thỏa mãn:
x-y-z+3=0 và x^2-y^2-z^2 =1
các bạn làm giúp m nha!!!
Bài 1.
a) Tìm x, y nguyên thỏa mãn: (x + y + 1) ^ 3 = 7 + x ^ 3 + y ^ 3
b) Tìm x, y nguyên dương thỏa mãn: y ^ 2 + 2xy - 8x ^ 2 - 5x = 2
Bài 1:Cho 1. Cho x, y, z dương thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức
\(P=2\left(x^2+y^2+z^2\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Bài 2:Cho hai số dương x, y thỏa mãn \(x+y\le2\) . Tìm giá trị nhỏ nhất của
\(C=\frac{1}{x^2+y^2}+\frac{7}{xy}+xy\)
Các bạn giải cho mình 1 bài là được rồi mà giải được cả 2 thì càng tốt
tìm x,y nguyên dương thỏa mãn : \(x^2+y^2=2\left(x+y\right)+xy\)
cho các số thực dương x,y,z thỏa mãn xy=xz+yz. tìm giá trị nhỏ nhất
\(P=\frac{\text{4z(z^2-xy)-(x^2+y^2)(2z-x-y)}}{\left(x+y\right)z^2}\)