đặt Pfrac{1}{sqrt{x^5-x^2+3xy+6}}+frac{1}{sqrt{y^5-y^2+3yz+6}}+frac{1}{sqrt{z^5-z^2+3zx+6}}ta có:left(x^3+2x^2+3x+3right)left(x-1right)^2ge0Leftrightarrow x^5-x^2ge3x-3cmtty^5-y^2ge3y-3;z^5-z^2ge3z-3Rightarrow Plefrac{1}{sqrt{3x-3+3xy+6}}+frac{1}{sqrt{3y-3+3yz+6}}+frac{1}{sqrt{3z-3+3zx+6}}frac{1}{sqrt{3left(x+xy+1right)}}+frac{1}{sqrt{3left(y+yz+1right)}}+frac{1}{sqrt{3left(z+zx+1right)}}áp dụng bunhia ta có:3left(x+xy+1right)geleft(sqrt{x}+sqrt{xy}+1right)^2cmttRightarrow Plefrac{1}{sqrt{x}+sqr...
Đọc tiếp
đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)
ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)
\(\Leftrightarrow x^5-x^2\ge3x-3\)
cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)
\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)
\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)
áp dụng bunhia ta có:
\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)
cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)
đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)
\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)
\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)
\(\Rightarrow P\le1\)