Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
và x+y+z=16
Cho \(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\) và x - y + z = 200. Tìm x, y, z
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
→Cho \(\dfrac{x}{3}=\dfrac{y}{4}\)và \(\dfrac{y}{5}=\dfrac{z}{6}\)tính A=\(\dfrac{2x+3y+4z}{3x+4y+2z}\)←
cho \(\dfrac{x}{3}=\dfrac{y}{4}\)và \(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)Tính M= \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
1.\(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3y+4z=24\)
2.\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
3.\(6x=10y=15zvàx+y-z=90\)
Câu 1 : cho tỉ lệ thức a/b =c/d .Chứng minh : \(\dfrac{a+2b}{a-2b}\) = \(\dfrac{c+2d}{c-2d}\)
Câu 2 : Tìm x,y,z biết : (áp dụng công thức dãy tỉ số bằng nhau)
a) 2x=3y , 5y =7z và 3x+5y-7z =30.
b) \(\dfrac{x-1}{2}\)=\(\dfrac{y+3}{4}\)=\(\dfrac{z-5}{6}\)và 5z-3x-4y=50.
c) \(\dfrac{1}{2}\)x =\(\dfrac{2}{3}\)y=\(\dfrac{3}{4}\)z và x-y=15.