Giải các hệ pt, bất pt sau:
a, \(\left\{{}\begin{matrix}2x-2y+z=3\\2x+y-2z=-3\\3x-4y-z=4\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}2x-3y\ge2\\3x+2y< 4\\x-2y\ge5\end{matrix}\right.\)
xét các vị trị tương đối của mỗi cặp phẳng cho bởi các phương trình sau.
a) x+2y-z+5=0 và 2x+3y-7z-4=0
b) x-2y+z-3=0 và 2x-y+4z-2=0
c) x+y+z-1=0 và 2x+2y+2z+3=0
d) 3x-2y+3z+5=0 và 9x-6y-9z-5=0
e) x-y+2z-4=0 và 10x-10y+20z-40=0
Cho ba mặt phẳng (P): 3x+y+z-4=0,(Q); 3x+y+z+5=0 và (R): 2x-3y-3z+1=0. Xét các mệnh đề sau:
(1). (P)//(Q)
(2). (P) vuông góc (Q)
Khẳng định nào đúng
A. (1) SAI (2) ĐÚNG
B. (1) ĐÚNG (2) SAI
C. (1) (2) ĐÚNG
D. (1) (2) SAI
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm M' là ảnh của M(4; 2; 1) qua phép đối xứng qua mặt phẳng (α).
Đường thẳng d song song với hai mặt phẳng
(P): 3x + 12y - 3z - 5 = 0,
(Q): 3x - 4y + 9z = 0 và đồng thời cắt
cả hai đường thẳng d 1 : x + 5 2 = y - 3 - 4 = z + 1 3 , d 2 : x - 3 - 2 = y + 1 3 = z - 2 4 có phương trình là
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz. Tìm tâm I và tính bán kính R của mặt cầu (S): x²+y²+z²-2x-4y+2z+2=0.
A. I(-1;-2;1),R=2
B. I(1;2;-1),R=2√2
C. I(-1;-2;1),R=2√2
D. I(1;2;-1),R=2.
Trong không gian Oxyz, tập hợp các điểm M cách đều hai mặt phẳng (P): 2x + 3y + z - 1 = 0 và (Q): 3x + y + 2z - 3 = 0 là hai mặt phẳng có phương trình là:
A. x - 2y + z - 2 = 0 và 5x + 4y + 4z - 4 = 0
B. x - 2y + z - 2 = 0 và 5x + 4y + 3z - 4 = 0
C. x - 3y + z - 2 = 0 và 5x + 4y + 3z - 4 = 0
D. x + 2y + z - 2 = 0 và 5x + 4y + 3z - 4 = 0
Các số thực x, y thỏa mãn: ( 2 x + 3 y + 1 ) + ( - x + 2 y ) i = ( 3 x - 2 y + 2 ) + ( 4 x - y - 3 ) i là
A. x ; y = - 9 11 ; - 4 11
B. x ; y = 9 11 ; 4 11
C. x ; y = 9 11 ; - 4 11
D. x ; y = - 9 11 ; 4 11
Tìm các số thực x, y thỏa mãn:
a) 2x + 1 + (1 – 2y)i = 2 – x + (3y – 2)i
b) 4x + 3 + (3y – 2)i = y +1 + (x – 3)i
c) x + 2y + (2x – y)i = 2x + y + (x + 2y)i