Vì
\(\left|3x+9\right|\ge0\)
\(\left(2y+4\right)^2\ge0\)
\(\Rightarrow\left|3x+9\right|+\left(2y+4\right)\ge0\)
Để \(\left|3x+9\right|+\left(2y+4\right)^2\le0\Rightarrow\orbr{\begin{cases}\left|3x+9\right|=0\\\left(2y+4\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\y=-2\end{cases}}}\)
Vậy x = - 3; y = - 2
Ta có:
\(\left|3x+9\right|>\)hoặc bằng 0.\(\left(1\right)\)
\(\left(2y+4\right)^2>=0\)\(\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\left|3x+9\right|=0\); \(\left(2y+4\right)^2=0\)
\(\left|3x+9\right|=0\)
\(\Rightarrow3x+9=0\)
\(\Rightarrow3x=-9\)
\(\Rightarrow x=-3\)
ta lại có:
\(\left(2y+4\right)^2=0\)
\(\Rightarrow2y+4=0\)
\(\Rightarrow2y=-4\)
\(\Rightarrow y=-2\)
Vậy \(x=-3;y=-2\).