\(25-y^2=8\left(x-2009\right)^2.\)
\(8\left(x-2009\right)^2\ge0\text{ nên } 25-y^2\ge0\)
\(\text{Mặt khác: }8\left(x-2009\right)^2⋮2\text{ nên }25-y^2\text{ luôn chẵn}\Rightarrow y^2\text{ luôn lẻ }\)
\(\text{Nên }y^2\text{ luôn tồn tại ở các giá trị :}y^2=1;y^2=9;y^2=25\)
+\(y^2=1\Rightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\left(\text{loại vì x thuộc N}\right)\)
+\(y^2=9\Rightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\left(\text{Loại}\right)\)
+\(y^2=25\Rightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\Rightarrow x=2009\)
Vậy...