PT <=> \(\left(x+y\right)^2=xy\left(xy+1\right)\)
Đến đây khó rồi :v ai giúp với:P
Không mất tính tổng quát,giả sử \(\left|x\right|\le\left|y\right|\Rightarrow x^2\le y^2\)
Ta có:\(x^2+xy+y^2\le3x^2\)
Khi đó:\(3x^2\ge x^2y^2\Rightarrow y^2\le3\Rightarrow y\in\left\{1;-1;0\right\}\)
Với \(y=0\Rightarrow x=0\)
Với \(y=1\Rightarrow x^2+x+1=x^2\Rightarrow x=-1\)
Với \(y=-1\Rightarrow x^2-x+1=x^2\Rightarrow x=1\)
Vậy \(\left(x;y\right)=\left(1;-1\right)=\left(-1;1\right)=\left(0;0\right)\)
Các bác check hộ cháu ạ.