x2-y2=2011
(x-y)(x+y)=2011
sử dụng hằng đẳng thức hiệu 2 bình phương
x2-y2=2011
(x-y)(x+y)=2011
sử dụng hằng đẳng thức hiệu 2 bình phương
tìm x,y,z biết x2+y2+z2=xy+yz+xz và x2011+y2011+z2011=32012
1) Tìm x, y, z biết rằng x^2+y^2+z^2=xy+yz+xz và x^2011+y^2011+z^2011=3^2012
2) Tính A= (1^4+1/4)(3^4+1/4)(5^4+1/4)....(2011^4+1/4) / (2^4+1/4)(4^4+1/4)(6^4+1/4)....(2012^4+1/4)
Tìm x,y,z
a) x2 + y2 + z2 = xy +yz + zx và x2011+y2011+z2011=32012
b) x+y+z=8. Tìm GTLN của B= xy+yz+zx
Cho 3 số x, y, z thoả mãn điều kiện xyz=2011. chứng minh rằng biểu thức sau không phụ thuộc vào các biến x, y, z :
\(\frac{2011x}{xy+2011x+2011}+\frac{y}{yz+y+2011}+\frac{z}{xz+z+1}\)
a, b, c khác 0. Tính x^2011 + y^2011 + z^2011 biết :(x^2 + y^2 + z^2) / (a^2+b^2+c^2)=x^2/a^2+y^2/b^2+c^2/z^2
cho x,y,z thỏa mãn : (x+y+z) . (xy+yz+zx) = xyz và x+y+z #0
tính B= \(\frac{x^{2011}+y^{2011}+z^{2011}}{\left(x+y+z\right)^{2011}}\)
Cho a,b,c khác 0 va tính x^2011+y^2011+z^2011
Biết (x^2+y^2+z^2) / (a^2+b^2+c^2) = x^2/a^2 +y^2/b^2 +z^2/c^2
Tìm x,y,z thuộc Z biết:
4(x+y+z)=xyz
cho a;b;c khác 0 tinh D=x2011+y2011+z2011
biết\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tìm x,y,z thuộc Z biết x+y+z=3 và x3+y3+z3=3