Ko mất tính tổng quát, giả sử \(x>y\left(x,y\in N\right)\)
\(2^x-2^y=2\\ \Rightarrow2^y\left(2^{x-y}-1\right)=2\)
Ta có \(2^{x-y}-1\) lẻ nên \(2^y\left(2^{x-y}-1\right)=2\cdot1\)
\(\Rightarrow\left\{{}\begin{matrix}2^y=2=2^1\\2^{x-y}-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2^{x-1}=2^1\\y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) (thỏa mãn)
Vậy \(\left(x;y\right)=\left(2;1\right)\)