Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mai Hương

Tìm x,y thuộc N biết:  \(25-y^2=8\left(x-2009\right)^2\)

tth_new
27 tháng 2 2019 lúc 10:01

Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)

\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)

Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)

\(\Rightarrow y\in\left\{1;3;5\right\}\)

Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)

Nguyễn Thái Thịnh
2 tháng 3 2020 lúc 20:44

Ta có: \(25-y^2=8.\left(x-2009\right)^2\)

\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)

Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)

\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)

Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:

\(8.1+y^2=25\)

\(\Rightarrow8+y^2=25\)

\(\Rightarrow y^2=17\)( loại )

Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:

\(8.0+y^2=25\)

\(\Rightarrow0+y^2=25\)

\(\Rightarrow y^2=25\)

\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)

Mà \(y\in N\)

\(\Rightarrow y=5,x=2009\)

Vậy \(x=2009,y=5\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Hoàng Tài
Xem chi tiết
Bùi Hồng Thắm
Xem chi tiết
Baozi exo
Xem chi tiết
Haruno Sakura
Xem chi tiết
KaKaShi_SaSuKe
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Trần Phương Uyên
Xem chi tiết
Thiều Thị Nhung
Xem chi tiết
Yến Nguyễn
Xem chi tiết