Cho x,y,z>0 va xyz=1. Tim Min cua \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho các số dương x,y thỏa mãn\(\left(x\sqrt{x}+y\sqrt{y}\right)-3\left(x+y\right)+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)
tim ma cua M=\(\frac{2\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
1.cmr \(x+y-2\left(\sqrt{x}+\sqrt{y}\right)+2\ge0\)
2.tim x,y tm voi x>1/4,y>1/4 \(x^2+y^2=\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-1\right)\)
Cho x,y,z >0 va 1/x+1/y+1/z nho hon hoac bang 1. Tim GTLN \(P=\frac{1}{\sqrt{2}x+y+z}+\frac{1}{\sqrt{2}y+x+z}+\frac{1}{\sqrt{2}z+x+y}\)
1.Tìm x,y thuộc \(ℕ\)thỏa: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{x}\)
2.Tìm các số hữu tỉ x,y thỏa: \(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
3. Tìm tất cả các giá trị x,y,z sao cho:
\(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
Làm được câu nào cx tick nha ( mik cs 3 nick)
Cho A = \(\dfrac{x+y-2\sqrt{xy}}{x-y}\left(x\ge0;y\ge0;x\ne y\right)\)
1) Chứng minh A = \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) Tính A với x = \(3+2\sqrt{2}\) và y = \(3-2\sqrt{2}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
Cho \(p=\left(\frac{x}{x+y}\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\right):\left(\frac{x\sqrt{x}+y\sqrt{y}}{x^2\sqrt{x}-y^2\sqrt{x}-x^2\sqrt{y}+y^2\sqrt{y}}\right)\)
a. Rút gọn P
b. Tính giá trị của P khi \(\sqrt{x}+\sqrt{y}=5\)và \(\sqrt{xy}=6\)
Cho x,y,z là các số dương. Chứng minh rằng:
\(\frac{1}{\sqrt{x}+3\sqrt{y}}+\frac{1}{\sqrt{y}+3\sqrt{z}}+\frac{1}{\sqrt{z}+3\sqrt{x}}\ge\frac{1}{\sqrt{x}+2\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{y}+2\sqrt{z}+\sqrt{x}}+\frac{1}{\sqrt{z}+2\sqrt{x}+\sqrt{y}}\)
1. Tim x,y,z biet: \(\frac{1}{2}\left(x+y+z\right)-3=\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-4}\)
2. Chox,y,z > 0 thoa man \(x+y+z+\sqrt{xyz}=4\) . Tinh \(A=\sqrt{x\left(4-y\right)\left(4-z\right)+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}}\)