\(4x^2+y^2-2x-y-2xy+1=1\)
\(\Leftrightarrow4x^2-4xy+y^2-2x-y+2xy=0\)
\(\Leftrightarrow\left(2x-y\right)^2-2x-y+2xy=0\)
\(\Leftrightarrow x\left[\left(2x-y\right)-2x-y+2xy\right]=0\)
\(\Leftrightarrow x\left(2x-y\right)^2-2x^2+xy=0\)
\(\Leftrightarrow x\left[\left(2x-y\right)^2-2x+y\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(2x-y\right)^2-2x+y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(2.0-y\right)^2-2.0+y=0\end{cases}}}\) (thay x=0 vào biểu thức dưới)
\(\Leftrightarrow x=0\) hoặc \(y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\) (mà x;y nguyên dương )=>y=0
Vậy x=0 ;y=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\left(tm\right)\\y=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\left(tm\right)\\y=-1\left(ktm\right)\end{cases}}\end{cases}}\)
Bạn sai rồi nhé. Khi ta giải đc x=0 ở Th1 thì không được áp dụng x=0 ở th2