\(x^2-2xy+5y^2-4y+1=0\)
=> \(\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)
=> \(\left(x-y\right)^2+\left(2y-1\right)^2=0\)
Ta có: \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(2y-1\right)^2\ge0\forall y\)
=> \(\left(x-y\right)^2+\left(2y-1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\2y=1\end{cases}}\) <=> \(x=y=\frac{1}{2}\)
Vậy x = y = 1/2 (tm)
\(x^2-2xy+5y^2-4y+1=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2y-1\right)^2=0\)
Mà (x-y)2và (2y-1)2 > 0
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)