Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Trương Gia Kim

Tìm x,y biết:

\(2^{x+3}.3^{y+1}=144^x\)

Ngọc Vĩ
27 tháng 7 2016 lúc 23:09

Ta có: \(2^{x+3}.3^{y+1}=\left(9.16\right)^x\)

\(\Rightarrow2^{x+3}.3^{y+1}=\left(3^2.2^4\right)^x\)

\(\Rightarrow2^{x+3}.3^{y+1}=3^{2x}.2^{4x}\)

Ta có hệ:

\(\hept{\begin{cases}x+3=4x\\y+1=2x\end{cases}\Rightarrow\hept{\begin{cases}3x=3\\y=2x-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=2-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

                                           Vậy (x;y) = (1;1)


Các câu hỏi tương tự
Quỳnh Trương Gia Kim
Xem chi tiết
Tran Mai Khanh
Xem chi tiết
Trí Lê
Xem chi tiết
Tran Mai Khanh
Xem chi tiết
Nguyễn Thị Mỹ Anh
Xem chi tiết
lenguyenminhhang
Xem chi tiết
lenguyenminhhang
Xem chi tiết
lenguyenminhhang
Xem chi tiết
lê tâm như
Xem chi tiết