1/ x\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\text{và}2x+3y-z=50\)
2/ x : y : z = 3 : 5 ; ( - 2 ) và 5x - y + 3z = -16
3/ 2x + 3y ; 7z = 5y và 3x - 7y + 5z = 30
4/ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\text{và}x-y-z=38\)
tìm x,y,z biết\(\dfrac{x}{-5}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{3};2x+3y=1\)
\(A=\dfrac{5x-3y}{2x-y}\) biết \(\dfrac{x}{y}=\dfrac{6}{5}\)
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Tìm x và y
\(\dfrac{x}{3}=\dfrac{y}{4}\)và\(x+y=14\)
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
tìm x, y biết\(x+y=2\) và \(\dfrac{2x-1}{5}=\dfrac{3y-2}{3}\)
Tìm x,y,z biết :
1) \(\dfrac{x}{-7}=\dfrac{y}{4}\) và \(2x-3y=-78\)
2) \(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}\) và \(x-y+z=-15\)
Tìm x,y biết:
1, 2x+3y=1800
2, \(\dfrac{x}{y}\)=\(\dfrac{7}{3}\)