Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hattori Hejji

Tìm x

(x+2)4+(x+8)4 =272

 

online
10 tháng 6 2017 lúc 13:45

*) Cách 1: đặt t = x+5 , có x+2 = t-3 ; x+8 = t+3 
ptrình thành (t-3)^4 + (t+3)^4 = 272 <=> (t²+9-6t)² + (t²+9+6t)² = 272 
<=> (t²+9)² + 36t² - 12t(t²+9) + (t²+9)² + 36t² + 12t(t²+9) = 272 
<=> (t²+9)² + 36t² = 136 <=> (t²)² + 54t² - 55 = 0 <=> t² = 1 ; t² = -55 (loại) 
* t = x+5 = -1 <=> x = -6 
* t = x+5 = 1 <=> x = -4 
KL: ptrình có 2 no: x = -6 or x = -4 
~ ~ ~ 
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 
~~~~~~~~~~~~~~~~~~~

Đỗ Thị Thanh Lương
10 tháng 6 2017 lúc 13:44

(x+2)^4 + (x+8)^4 = 272 

Đặt t = x+5 , có x+2 = t-3 ; x+8 = t+3 
phương trình thành (t-3)^4 + (t+3)^4 = 272 <=> (t²+9-6t)² + (t²+9+6t)² = 272 
<=> (t²+9)² + 36t² - 12t(t²+9) + (t²+9)² + 36t² + 12t(t²+9) = 272 
<=> (t²+9)² + 36t² = 136 <=> (t²)² + 54t² - 55 = 0 <=> t² = 1 ; t² = -55 (loại) 
* t = x+5 = -1 <=> x = -6 
* t = x+5 = 1 <=> x = -4 
KL: phương trình có 2 no: x = -6 or x = -4 


Các câu hỏi tương tự
Rampiro Wind
Xem chi tiết
Nguyen Ngoc Anh
Xem chi tiết
Nguyen Ngoc Anh
Xem chi tiết
Trần Ngyễn Yến Vy
Xem chi tiết
Nguyen Ngoc Anh
Xem chi tiết
Trần Ngyễn Yến Vy
Xem chi tiết
Hoàng Ninh
Xem chi tiết
Nguyễm Minh
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết