(x + 1 ) + (x + 2) + (x + 3) + ... + (x + 100) = 7450
(x + x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 7450
100 số x 100 số hạng
100.x + (1 + 100).100:2 = 7450
100.x + 101.50 = 7450
100.x + 5050 = 7450
100.x = 7450 - 5050
100.x = 2400
x = 2400 : 100
x = 24
Vậy x = 24
(x+1)+(x+2)+(x+3)+......+(x+100)=7450
=> 100x + (1 + 2 + 3 + ...+ 100) = 7450
=> 100x + 5050 = 7450
=> 100x = 2400
=> x = 24
(x+1)+(x+2)+(x+3)+...+(x+100)=7450
(x+x+x+...+x)+(1+2+3+...+100)=7450
100x+5050=7450
100x=7450-5050
100x=2400
x=24.
(x + 1 ) + (x + 2) + (x + 3) + ... + (x + 100) = 7450
(x + x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 7450
100 số x 100 số hạng
100.x + (1 + 100).100:2 = 7450
100.x + 101.50 = 7450
100.x + 5050 = 7450
100.x = 7450 - 5050
100.x = 2400
x = 2400 : 100
x = 24
Vậy x = 24
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 7450
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 )= 7450
100x + 5050 = 7450
100x = 7450 - 5050
100x = 2400
x = 2400 :100
x = 24
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 7450
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 )= 7450
100x + 5050 = 7450
100x = 7450 - 5050
100x = 2400
x = 2400 :100
x = 24
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 7450
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 )= 7450
100x + 5050 = 7450
100x = 7450 - 5050
100x = 2400
x = 2400 :100
x = 24
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=7450\)
\(=\left(x+x+...+x\right)+\left(\frac{\left(100+1\right).100}{2}\right)=7450\)
\(=100x+\frac{101.100}{2}=7450\)
\(=>100x+101.50=7450\)
\(=>100x+5050=7450\)
\(=>100x=7450-5050=2400\)
\(=>x=24\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right) +......+\left(x+100\right)=7450\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(1+2+3+.....+100\right)=7450\)
100 số x 100 số hạng
\(\Leftrightarrow100x+\left(1+100\right).100:2=7450\)
\(\Leftrightarrow100.x+101.50=7450\)
\(\Leftrightarrow100x+5050=7450\)
\(\Leftrightarrow100x=7450-5050=2400\)
\(\Leftrightarrow x=2400:100=24\)