\(PT\Leftrightarrow\sqrt{x^2+24}-\sqrt{x^2+8}=3x-1\)
Mà \(\sqrt{x^2+24}>\sqrt{x^2+8}\) nên \(3x-1>0\Leftrightarrow x>\frac{1}{3}\)
Ta có : \(PT\Leftrightarrow\left(\sqrt{x^2+24}-5\right)-\left(\sqrt{x^2+8}-3\right)-3x+3=0\)
\(\Leftrightarrow\frac{x^2+24-25}{\sqrt{x^2+24}+5}-\frac{x^2+8-9}{\sqrt{x^2+8}+3}-3\left(x-1\right)=0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+24}+5}-\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{\left(x+1\right)}{\sqrt{x^2+24}+5}-\frac{\left(x+1\right)}{\sqrt{x^2+8}+3}-3\right]=0\)
Suy luận dựa \(ĐK\) ta được \(x=1\)