a: |x+6|+|x-2|=8(1)
TH1: x<-6
Phương trình (1) sẽ trở thành:
-x-6+2-x=8
=>-2x-4=8
=>-2x=12
=>x=-6(loại)
TH2: -6<=x<2
Phương trình (1) sẽ trở thành:
\(x+6+2-x=8\)
=>8=8(luôn đúng)
TH3: x>=2
Phương trình (1) sẽ trở thành:
x+6+x-2=8
=>2x+4=8
=>2x=4
=>x=2(nhận)
Vậy: -6<=x<=2
b: \(\left|x-2\right|+\left|x-5\right|-3=0\)
=>\(\left|x-2\right|+\left|x-5\right|=3\left(2\right)\)
TH1: x<2
Phương trình (2) sẽ trở thành:
\(2-x+5-x=3\)
=>7-2x=3
=>2x=7-3=4
=>x=2(loại)
TH2: 2<=x<5
Phương trình (2) sẽ trở thành:
\(x-2+5-x=3\)
=>3=3(luôn đúng)
TH3: x>=5
Phương trình (2) sẽ trở thành:
x-2+x-5=3
=>2x-7=3
=>2x=10
=>x=5(nhận)
Vậy: 2<=x<=5