\(\left(2x-1\right)^2-\left(2-x\right)\left(2x-1\right)=0\)
\(4x^2-4x+1-5x+2x^2+2=0\)
\(6x^2-9x+3=0\)
\(6x^2-6x-3x+3=0\)
\(\left(x-1\right)\left(6x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\6x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
Từ biểu thức, suy ra:
(2x-1)(2x-1-2+x)=0
<=>(2x-1)(3x-3)=0
<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
Vậy x\(\in\){1/2;1}