\(A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x\left(x+3\right)}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\)
\(=1-\frac{1}{x+3}\)
\(=\frac{x+2}{x+3}=\frac{100}{101}\)
\(\Rightarrow x=98\)
\(A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x.\left(x+3\right)}=\frac{100}{101}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(A=1-\frac{1}{x+3}=\frac{100}{101}\)
\(\frac{1}{x+3}=1-\frac{100}{101}=\frac{1}{101}\)
=> x + 3 = 101
=> x = 101 - 3
=> x = 98
Vậy x = 98
Ủng hộ mk nha ^_-