a; 2.(2\(x\) - 1) = \(x-2\)
4\(x\) - 2 = \(x\) - 2
4\(x\) - \(x\) = -2 + 2
3\(x\)= 0
\(x\) = 0
Vậy \(x\) = 0
b; (3\(x\) - 5)3 = (3\(x\) - 5)2
(3\(x\) - 5)3 - (3\(x\) - 5)2 = 0
(3\(x-5\))2.(3\(x\) - 5 - 1) = 0
\(\left[{}\begin{matrix}3x-5=0\\3x-5-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=5\\3x=6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{6}{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=2\end{matrix}\right.\)
Vậy \(x\) {\(\dfrac{5}{3}\); \(2\)}