a)\(2x+143=557\)
\(\Leftrightarrow2x=557-143\)
\(\Leftrightarrow2x=414\)
\(\Leftrightarrow x=414\div2\)
\(\Leftrightarrow x=207\)
Vậy x = 207
\(2x^2+12x-23=-41\)
\(\Rightarrow2x^2-12x+18=0\)
\(\Rightarrow2x^2-4x-9x+18=0\)
\(\Rightarrow2x.\left(x-2\right)-9.\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right).\left(2x-9\right)=0\)
....
b) \(2x^2+12x-23=-41\)
\(\Leftrightarrow2x\left(x+6x\right)=-41+23\)
\(\Leftrightarrow2x\left(x+6x\right)=-18\)
\(\Leftrightarrow x\left(x+6x\right)=-18\div2\)
\(\Leftrightarrow x^2+6x^2=-9\)(1)
Vì \(\hept{\begin{cases}x^2\ge0\\6x^2\ge0\end{cases}}\Rightarrow x^2+6x^2\ge0\)[Trái với (1)]
Vậy phương trình vô nghiệm
TÊN HAY QUÁ HA TÊN LINH TINH
COMMENT THẾ THÔI ĐÙA MÀ TÊN HAY ĐẤY NHƯNG KHÔNG HAY BẰNG TÊN XUÂN MAI
\(3x^3+9x^2+9x+3=0\)
<=>\(3.\left(x^3+3x^2+3x+1\right)=0\)
<=>\(3.\left(x^3+x^2+2x^2+2x+x+1\right)=0\)
<=> \(3.\left(x+1\right)^3=0\)
<=> \(x+1=0\)
....
a) \(2x+143=557\)
\(\Rightarrow2x=414\)
\(\Rightarrow x=414:2=207\)
b) \(2x^2+12x-23=-41\)
\(\Rightarrow2x^2+6x+6x=-18\)
\(\Rightarrow2x^2+6x+6x+18=0\)
\(\Rightarrow2x.\left(x+3\right)+6.\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right).\left(2x+6\right)=0\)
.........................
\(3x^3+9x^2+9x+3=0\)
\(\Leftrightarrow3\left(x^3+3x^2+3x+1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=0-1\)
\(\Leftrightarrow x=-1\)