Ta có: \(\left(2x-1\right)^{12}=\left(x+1\right)^{12}\)
=> \(\orbr{\begin{cases}2x-1=x+1\\2x-1=-x-1\end{cases}}\)
=> \(\orbr{\begin{cases}2x-x=1+1\\2x+x=-1+1\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\3x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy ...
\(\left(2x-1\right)^{12}=\left(x+1\right)^{12}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+1\\2x-1=-\left(x+1\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-x=1+1\\2x+x=-1+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\3x=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy : \(x\in\left\{2;0\right\}\)
Rất vui vì giúp đc bạn !!!