\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)= \(\frac{1}{8}\)
\(\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}\right)\)= \(\frac{1}{8}\)
\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)\)= \(\frac{1}{8}\)
=> \(\frac{1}{2}-\frac{1}{2x}\)= \(\frac{1}{4}\)
=> 1/2x = 1/4
=> 2x = 4
x = 4 : 2
x = 2
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right)2x}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{8}.2=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
\(\Rightarrow2x=4\Leftrightarrow x=2\)