\(\sqrt{x+2012}=2012-x^2\)
Bình phương hai vế ta được :
\(x+2012=x^4-4024x^2+2012^2\)
<=> \(x^4-4024x^2-x+2012.2011=0\)
<=> \(\left(x^2-x-2012\right)\left(x^2+x-2011\right)=0\)
Bạn lớp 9 nên chắc học công thức nghiệm rồi nhỉ, tự giải tiếp nha :D
\(\sqrt{x+2012}=2012-x^2\)
Bình phương hai vế ta được :
\(x+2012=x^4-4024x^2+2012^2\)
<=> \(x^4-4024x^2-x+2012.2011=0\)
<=> \(\left(x^2-x-2012\right)\left(x^2+x-2011\right)=0\)
Bạn lớp 9 nên chắc học công thức nghiệm rồi nhỉ, tự giải tiếp nha :D
tìm x biết\(x^4+\sqrt{x^2+2012}=2012\)
Giải hệ phương trình :
\(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\\x^2+z^2-4\left(y+z\right)+8=0\end{cases}}\)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)-\(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)+\(\dfrac{2\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\) (x>0, x khác 1)
a) Rút gọn P
b) Tìm x để \(\dfrac{P}{2012\sqrt{x}}\) đạt GTNN
Tìm x thỏa mãn: \(\sqrt[3]{3x^2-x+2011}-\sqrt[3]{3x^2-7x+2012}-\sqrt[3]{6x-2013}=\sqrt[3]{2012}\)
Giai he phuong trinh
1) \(\hept{\begin{cases}\left(x^4+1\right)\left(y^4+1\right)=4xy\\\sqrt[3]{x-1}-\sqrt{y-1}=1-x^3\end{cases}}\)
2) \(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\\x^2+z^2-4\left(y+z\right)+8=0\end{cases}}\)
cho 3 số x,y,z thỏa mãn đồng thời
\(3x-2y-2\sqrt{y+2012}+1=0\)
\(3y-2z-2\sqrt{z-2013}+1=0\)
\(3z-2x-2\sqrt{x-2}-2=0\)
tính giá trị của biểu thức P=\(\left(x-4\right)^{2011}+\left(y+2012\right)^{2012}+\left(z-2013\right)^{2013}\)
cho \(\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\)
Tính A = x + y
Giải phương trình :a,\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
b,\(\sqrt{x^2 +1-2x}+\sqrt{x^2+4-4x}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
c,\(x^2-x-1=\sqrt{8x+1}\)
Giải Pt :
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}=\frac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)