Ta có : \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\)\(\frac{4y-5x}{6}\)\(=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}\)
\(=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}\)\(=0\)
\(\Rightarrow\frac{5z-6y}{4}=0\Leftrightarrow5z-6y=0\Leftrightarrow5z=6y\Leftrightarrow\frac{y}{5}=\frac{z}{6}\left(1\right)\)
\(\Rightarrow\frac{6x-4z}{5}=0\Leftrightarrow6x-4z=0\Leftrightarrow6x=4z\Leftrightarrow\frac{z}{6}=\frac{x}{4}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\)\(\frac{y}{5}=\frac{z}{6}=\frac{x}{4}\)\(=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)
Áp dụng tính chất dãy tỉ số băng nhau, ta có:
\(\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)
\(\Rightarrow\frac{x}{4}=3\Leftrightarrow x=3.4=12\)
\(\Rightarrow\frac{y}{5}=3\Leftrightarrow y=3.5=15\)
\(\Rightarrow\frac{z}{6}=3\Leftrightarrow z=3.6=18\)
Vậy \(\hept{\begin{cases}x=12\\y=15\\z=18\end{cases}}\)
Bài làm :
Ta có :
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}\)\(\)
\(=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}\)
\(=0\)
\(\Rightarrow\frac{5z-6y}{4}=0\Leftrightarrow5z-6y=0\Leftrightarrow5z=6y\Leftrightarrow\frac{y}{5}=\frac{z}{6}\left(1\right)\)
\(\Rightarrow\frac{6x-4z}{5}=0\Leftrightarrow6x-4z=0\Leftrightarrow6x=4z\Leftrightarrow\frac{z}{6}=\frac{x}{4}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{y}{5}=\frac{z}{6}=\frac{x}{4}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta có:
\(\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)
\(\Rightarrow\frac{x}{4}=3\Leftrightarrow x=3.4=12\)
\(\Rightarrow\frac{y}{5}=3\Leftrightarrow y=3.5=15\)
\(\Rightarrow\frac{z}{6}=3\Leftrightarrow z=3.6=18\)
Vậy x=12 ; y=15 ; z=18