\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
vậy......
Ta có: \(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy \(\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0
⇔ ( 3x - 3 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0
⇔ \(\hept{\begin{cases}3x-3=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow9\left(x-1\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\left(z+1\right)^2\ge0\forall z\)\(\Rightarrow2\left(z+1\right)^2\ge0\forall z\)
\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z-1\right)^2\ge0\forall x,y,z\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy \(x=1\); \(y=3\); \(z=-1\)