Ta có \(x^2+y^2+z^2\ge xy+yz+zx\)
Đẳng thức xảy ra khi x = y = z
Bạn áp dụng vào nhé.
Ngọc cứ làm tắt thì vài người hiểu chứ vài bạn không biết đâu :)
Ta có :
\(x^2+y^2+z^2=xy+xz+yz\)
\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Rightarrow2\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow x^2+y^2-2xy+y^2+z^2-2yz+x^2+z^2-2xz=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-z\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}}\)
\(\Rightarrow x-y=x-z=y-z=0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow x^{2016}=y^{2016}=z^{2016}\)
Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2016}\)
\(\Rightarrow x^{2016}=y^{2016}=z^{2016}=\frac{3^{2016}}{3}=3^{2015}\)
\(\Rightarrow x=y=z=\sqrt[2016]{3^{2015}}=\sqrt[2016]{\frac{3^{2016}}{3}}=\frac{3}{\sqrt[2016]{3}}\)
Mình chưa học cách làm như thế. Chẳng hiểu gì hết. các bạn có thể làm theo cách khác không?
Vì x=y=z (cmt)
=> 3*x^2016=3^2017
x^2016=3^2017:3=3^2016
=>x=y=z=3