Tìm các số hữu tỉ x, y, z biết
a) 3x = 2y, 7y=5z và x-y+z=32
b)\(\frac{x-1}{2}\)= \(\frac{y-2}{3}\)= \(\frac{z-3}{4}\)và x-2y+3z=-10
c) x(x+y+z)=-12 ; y(y+z+x)=18 ; z(z+x+y)=30
x,y,z dương ,x+2y+3z=3
tìm GTLN của Q=\(\frac{88y^3-x^3}{2xy+16y^2}+\frac{297z^3-8y^3}{6zy+36z^2}+\frac{11x^3-27z^3}{3xz+4x^2}\)
Tìm x,y,z
a) (x-3)^3-(x-3)(x^2+3x+9)+9(x+1)^2=15
b) (x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0
c) x^2+y^2+z^2= 4x-2y+6z-14
d) 8x^3-12x^2+6x-1=0
e) x^2+5y^2-4xy-8y+2x+5=0
f) x(x-5)(x+5)-(x-2)(x^2+2x+4)=3
Cho 3 số thực dương x;y;z . Chứng minh:
\(\frac{25x}{y+z}+\frac{4y}{z+x}+\frac{9z}{x+y}>12\)
1.Đa thức 4x(2y-z) +7y(2y-z) được phân tích thành nhân tử là :
A .(2y+z)(4x+7y)
B.(2y-z)(4x-7y)
C.(2y+z)(4x-7y)
D. (2y-z)(4x+7y)
2 Phân tích đa thức x2+3x+xy+3y thành nhân tử ta được :
A. (x+3)(y+3)
B. (x-y)(x+3)
C. (x+3)(x+y)
D. Cả 3 đều sai
Thu gọn và tính giá trị biểu thức
a) A= 3x^4 + 1/3xyz - 3x^4 - 4/3xyz + 2x^2y - 6z khi x=1; y=3 và z=1/3
b) B= 4x^3 - 2/7xyz - 4x^3 - 4/3xyz + 4x^2y khi x=-1; y=2 và z=-1/2
c) C= 4x^2 + 1/2xyz - 2/3xy^2z - 5x^2yz + 3/4xyz khi x=-1; /y/=2 và z=1/2
cho \(x,y,z\in N\)( \(x,y,z\ne0\))
biết \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)và \(\left(x+y\right)-z=38\)
Tìm x,y,z
Tìm x,y,z biết: \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)
Tìm x,y,z biết rằng \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)